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. For what value of P(B) will A and B be independent? 
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. Now A and B will be independent if 
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4. Answers
a. 
[image: image7.wmf]both are 10 amps

P(

)

=×=

8728

10945


b. 
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c. Let X be the number of fuses selected until a 15 amp fuse is obtained. Then 
[image: image9.wmf]>=-£=-=+=+=@-=

=

313112310467

24452145

P(

X)P(X)(P(X)P(X)P(X)).

. Another way to look at the problem is that the first three fuses must have been 10 amps, and the probability of that is 
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16. Let 
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 be the event the wafer comes from lot A, and 
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 be the event the wafer is conforming. From the table, 
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, while 
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. Because these probabilities are unequal, the events must be dependent.
20. Let G = event "good" risk, M = event "medium" risk, R = event "poor" risk. Let F = event a claim is filed.
a. 
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b. 
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. By the Law of Total Probability.
c. P(no letter or number repeated) = 
[image: image17.wmf]P(G|F)

P(F)P(G)P(F|G)P(M)P(F|M)P(R)P(F|R)

P(G)P(F|G).

.

.

=

=++

==

00035

04375

0008

by Baye's Rule.
34. Let A = event A functions, etc., let F = event the system functions. Then 
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where the last equality is by DeMorgan's Law. Now, 
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 because of the independence of A, B, C, and D. Finally, 
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36. Let A = Event component A functions, B = event component B functions, and F = event the system functions. Then 
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because A and B are independent.

b. 
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, so 
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c. 
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, so 
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38. Here is one proof that is representative of how any of them can be done. 
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  by the Law of the Complement applied to a condition probability




[image: image31.wmf]P(A)

=-

1

  because A and B are independent
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  which completes the proof that Ac and B are independent.
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